- Benchmark.
 lark technology

No. of Sections	2	3	4	5	6 or more
1.5/1 VSWR BW MIN 3 dB BW	0.4	0.7	0.8	0.85	0.9

Specification	Standard	*Special
Electrical		
Center Frequency (Fc)	1 to 5000 MHz	0.1 to 5000 MHz
3dB Relative Bandwidth (\% of Fc)	2 to 50	3 to 100
Number of Sections Available	3 to 6	2 to 10
Nominal Impedance	50Ω	50 to 300Ω
Maximum Insertion Loss	See Curve	See Curve
Maximum VSWR	1.5/1	1.3/1
Attenuation in the Stopband	See Page 14	See Page 14
Maximum Input Power (Average) (Watts to 10,000 ft.)	2	4
Maximum Input Power (Peak) (Watts to 10,000 ft.)	20	40
Environmental		
Shock	20 G's	75 G's
Vibration	10 G's	30 G's
Humidity	95\% relative	100\% relative
Altitude	Unlimited	Unlimited
Temperature Range (Operating)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature (Non-Operating)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Mechanical Approximate Weight in oz.	L + 10	L + 10
Mounting Provisions	See Next Page	See Next Page
Special Configurations	Consult Lark	Consult Lark

Insertion Loss:

The maximum Insertion Loss at center frequency is equal to:

$$
\frac{\mathrm{LF} \times(\mathrm{N}=0.5)}{\% 3 \mathrm{~dB} \mathrm{BW}} \quad+0.2
$$

Where:
LF = Loss Factor $N=$ Number of Sections
\% 3dB BW:

$$
\frac{3 \mathrm{~dB} \mathrm{BW}(\mathrm{MHz}) \times 100}{\text { Center Frequency }(\mathrm{MHz})}
$$

Example:
A 3 section MC with a center frequency of 700 MHz and a 3 dB BW of 70 MHz would be:

$$
\begin{aligned}
& \frac{4.0 \times 3.5}{10} \quad \frac{14}{10}=1.4 \\
& 1.4+0.2=1.6 \mathrm{~dB}
\end{aligned}
$$

Benchmark lark technology

Mechanical Specifications - MC Series

Frequency Range	Number of Sections	W	H	L	X
1-9.9 MHz	2 to 3	0.75	0.50	1.50	1.75
	4 to 5	0.75	0.50	2.50	2.75
	6 to 7	0.75	0.50	3.50	3.75
10-100 MHz	2 to 3	0.55	0.40	1.00	1.25
	4 to 5	0.55	0.40	1.50	1.75
	6 to 7	0.55	0.40	1.75	2.00
$101-300 \mathrm{MHz}$	2 to 3	0.44	0.40	0.75	1.00
	4 to 5	0.44	0.40	1.00	1.25
	6 to 7	0.44	0.40	1.50	1.75
10-100 MHz	2 to 3	0.44	0.31	0.75	1.00
	4 to 5	0.44	0.31	0.75	1.00
	6 to 7	0.44	0.31	1.25	1.50

Over 7 sections- Consult Benchmark Lark Engineering
Note: All standard units with SMA Connectors are supplied H $=0.40$ "

Connectors Available on MC Series

Code	Type
A	SMA Jack
B	SMA Plug
C	Solder Pin Axial

Code	Type
M	Solder Pin Radial
S	Special

Stopband Attenuation

The graphs on the following pages defi ne the normal specifi cation limits on attenuation for Lark's MC and MS bandpass fi lter series. The minimum level of attenuation in dB is shown as a "number of 3 dB bandwidths from center frequency". Since the frequency characteristics vary for differing bandwidths, it is necessary to establish specifi cations for each bandwidth. The different graphs represent various 3dB percentage bandwidths. Intermediate values should be interpolated. The 3dB percentage bandwidth is defi ned as follows:

$$
\frac{3 \mathrm{~dB} \text { BW }(\mathrm{MHz}) \times 100}{\text { Center Frequency }(\mathrm{MHz})}
$$

The exact relationship is as follows:
3dB Bandwidths
Rejection Frequency (MHz) - Center Frequency (MHz)
From Center Frequency
3dB Bandwidth (MHz)
Example:
Given: Center Frequency $=500 \mathrm{MHz}$
Minimum 3dB Bandwidth $=50 \mathrm{MHz}$
Number of Sections $=5$
Find: Minimum attenuation levels at 425 MHz and 585 MHz .
$3 \mathrm{~dB} \mathrm{BW's}$ from Fc $=\frac{425-500}{50}=-1.5$

$$
\text { and } \frac{585-500}{50}=+1.7
$$

The answer can be read directly from the 10% graph. Using the 5 section curve at the point $-1.5(425 \mathrm{MHz})$ we fi nd the minimum level of attenuation is 40 dB . At $+1.7(585 \mathrm{MHz})$ the minimum level of attenuation is 39 dB .
NOTE: The attenuation curves shown for the "MC" and "MS" series are for our standard designs. Other topologies may be utilized yielding different attenuation characteristics.

For special requirements, please contact our Engineering Department.

Benchmark Lark Technology

3201 E Harbour Dr | Phoenix, AZ 85034, USA
833.236.2400 | www.bench.com/lark

